
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DTIC
ELECTE
MAY 1 9 1995

CODE INSPECTION FOR NPSNET

by

Charles E. Adams

March 1995

Thesis Co-Advisors: Timothy J. Shimeall
John S. Falby

Approved for public release; distribution is unlimited.

19950518 022
■ynrC 'tJ'-*1-*" tm-

O

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collect™ of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
March 1995

4. TITLE AND SUBTITLE

CODE INSPECTION FOR NPSNET

3. REPORT TYPE AND DATES COVERED
Master's Thesis

6. AUTHOR(S)

Adams, Charles, E.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) "^"""""^«^__

The virtual reality research at the Naval Postgraduate School has produced a simulation environment called NPSNET.
NPSNET demonstrates that a real-time, interactive three-dimensional simulation system for multiple networked participants is
achievable using low-cost workstations. However, as NPSNET expands, limitations of the current testing methods have
become apparent, particularly in the area of man-hours spent in detecting faults in the software. The problem addressed by this
research was to improve the validation process of NPSNET by implementing an efficient code inspection.

The approach taken was to develop a two-person code inspection based on Fagan's Inspections. The development of the
inspection process began with the inspection checklist. The checklist is a result of studying the software development
difficulties of NPSNET and other code inspection checklists. Next was the design of the inspection process, which focused on
streamlining the amount of time and number of participants conducting the inspection. Finally, a trial inspection was conducted
to provide feedback on the effectiveness of the software inspection process.

The results of this work demonstrate that it is possible to develop a fast and effective inspection process with fewer people
required to conduct it. The trial inspection reduced the time from four to two hours to complete, produced a 35% defects per
lines of code rate, and only required two instead of four people to conduct

14. SUBJECT TERMS ~~■"™—■-—

NPSNET, code inspection checklist and inspection process.

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

60
16. PRICE CODE"

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

CODE INSPECTION FOR NPSNET

Charles E. Adams
Lieutenant, United States Navy

B.S.E.E., University Of California at Davis, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Author:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL
March 1995

C/juA^ t. ¥* UAMAS

Charles E. Adams

tAu\ AAr*"«>~>

Accesion For

By
Distribution/

NTIS CRA&I
DTIC TAB
Unannounced □
Justification

I

Availability Codes

■Dis

m.
Avail and/or

Special

Timothy J. SJjifneall, Thesis Co-Advisor

-7
J^^L

John S. Falby, Thesis Co-Advjsdf
^C

Ted Lewis, Chairman,
Department of Computer Science

111

IV

ABSTRACT

The virtual reality research at the Naval Postgraduate School has produced a

simulation environment called NPSNET. NPSNET demonstrates that a real-time,

interactive three-dimensional simulation system for multiple networked participants is

achievable using low-cost workstations. However, as NPSNET expands, limitations of the

current testing methods have become apparent, particularly in the area of man-hours spent

in detecting faults in the software. The problem addressed by this research was to improve

the validation process of NPSNET by implementing an efficient code inspection.

The approach taken was to develop a two-person code inspection based on Fagan's

Inspections. The development of the inspection process began with the inspection

checklist. The checklist is a result of studying the software development difficulties of

NPSNET and other code inspection checklists. Next was the design of the inspection

process, which focused on streamlining the amount of time and number of participants

conducting the inspection. Finally, a trial inspection was conducted to provide feedback on

the effectiveness of the software inspection process.

The results of this work demonstrate that it is possible to develop a fast and effective

inspection process with fewer people required to conduct it. The trial inspection reduced

the time from four to two hours to complete, produced a 35% defects per lines of code rate,

and only required two instead of four people to conduct.

VI

TABLE OF CONTENTS

I. INTRODUCTION !

A. NPSNET i

B. REVIEWS, WALKTHROUGHS, AND INSPECTIONS 2

C. RESEARCH QUESTIONS 4

D. SUMMARY OF CHAPTERS 4

H. CODE INSPECTION CHECKLIST 5

A. PURPOSE 5

B. DEVELOPING CHECKLISTS 6

C. NPSNET CODE INSPECTION CHECKLIST 6

1. Checklist Development 6

2. Initial NPSNET Checklist 7

3. NPSNET Logging Sheet 8

4. Use of the NPSNET Checklist 9

a. Producer 9

b. Inspector 9

D. THE INSPECTION PROCESS (TWO PERSON) 10

1. Preparation 10

2. Inspection Overview 10

3. Individual inspection 1 \

4. Logging Meeting 11

5. Follow Up 11

6. Record Keeping u

7. Inspection Process Improvement 12

HI. TRIAL INSPECTION 13

A. INSPECTION MODULE SELECTION 13

B. PREPARATION 13

VII

C. INSPECTION 14

D. ANALYSIS 15

1. Time 15

2. Defects Detected 16

3. Observations 20

IV. SUMMARY AND CONCLUSIONS 23

A. RESEARCH SUMMARY 23

B. APPLICATION 23

C. FUTURE RESEARCH 24

APPENDIX A. INITIAL NPSNET CODE INSPECTION CHECKLIST 27

APPENDIX B. NPSNET CODE INSPECTION CHECKLIST 33

Style Guide Section 41

LIST OF REFERENCES 47

INITIAL DISTRD3UTION LIST 49

Vlll

ACKNOWLEDGMENTS

A thesis is never the work of one individual. There are several people who contribute

to this work both directly and indirectly. I would like to express my sincere thanks to the

many people who helped me prepare and implement this thesis. In particular, I would like

to take this opportunity to thank Dr. Timothy J. Shimeall, for his expertise, guidance and

support from the birth of this idea to its fruition. Secondly, John S. Falby whose knowledge

and support assisted in making this thesis precise and fluent. A special thanks goes out to

my wife Darla for her patience, encouragement and loving support throughout this process.

Finally, I would like to thank my parents David and Harriet Adams for their love,

inspiration and leadership. Without the help and moral support of the above people and

others, this work would not have been possible.

IX

I. INTRODUCTION

Three-dimensional interactive visual simulation systems, known as virtual reality

systems, have become an increasingly preferred mechanism for the development of

complex systems for the Department of Defense and for operator training for those

systems. This preference is because virtual reality systems save on training cost, training

time and, most importantly, human lives.

If virtual reality systems are to be used by the Department of Defense with human

lives at stake, the results of the simulations must be trusted. One aspect of such trust is

trusting the reliability of the software that produces such results. Validation of a virtual

reality system is one form of establishing confidence and building trust into these systems.

To aid in the validation process, a system of testing criteria that takes advantage of

both static and dynamic testing needs to be incorporated in the software development

process. This technique exploits both human and computer strengths in the testing process.

The human strengths are exploited by directing the evaluation to important portions of the

design and source code in an execution-independent static fashion. Computer strengths are

exploited by standard testing techniques, which are long and exhausting tasks that humans

do not perform well. By exploiting the strong points of both, significant improvements can

be made in the validation of virtual reality systems based on their successful use on other

software systems, and their complementary error detection [Ref. 1].

A. NPSNET

The virtual reality research at the Naval Postgraduate School has produced a

simulation environment called Naval Postgraduate School Networked Vehicle Simulator

(NPSNET) [Ref. 2]. NPSNET demonstrates that a real time, interactive three-dimensional

simulation system for multiple networked participants utilizing Simulation Network

(SIMNET) databases and SIMNET and Distributed Interactive Simulation (DIS) formatted

networking is achievable using low-cost workstations. NPSNET models both real-world

and special-purpose terrain databases as well as a variety of imaginary and real vehicles,

including tanks, aircraft and helicopters. The user can operate any vehicle not currently

being used by another user and can fire on any other vehicle. A user's vehicle can interact

in real time with the vehicle of any other user on the network as well as autonomous

vehicles controlled by the system or other workstations.

However, as NPSNET expands, limitations of current testing techniques have

become apparent, particularly in the area of detecting faults in communication-control

software. In addition to NPSNET, improved testing techniques may aid other real time

projects at the Naval Postgraduate School, such as the Autonomous Underwater Vehicle

[Ref. 3] and the Yamabico autonomous robot [Ref. 4], which have been plagued by similar

limitations of current testing techniques.

B. REVIEWS, WALKTHROUGHS, AND INSPECTIONS

Research testing of software in the Naval Postgraduate School NPSNET research

group has been accomplished primarily through computer-based testing techniques. Non-

computer-based testing ("human testing") needs to be explored as a supplement to current

NPSNET research testing methods. Experience has shown that these "human testing"

techniques are quite effective in finding errors. Common recommendations are that one or

more of these should be employed in every programming project [Ref. 5].

Reviews, walkthroughs, and inspections are the primary "human testing" methods.

All involve the reading or visual inspection of a portion of the project (project element) by

a team of people, with one goal in mind: to find errors [Ref. 5]. The differences between

them are subtle but distinct and are presented here based on the IEEE Standards Board

[Ref. 6].

The objective of a technical review is to examine a project element and provide

management with evidence that: the project element conforms to specifications; the

development of the project element is according to plans, standards, and guidelines; and

changes to the project element are correct and only affect areas specified in the change

specification. The recommended number of participants in the technical review team is

three or more people depending on the size and complexity of the software element being

examined. The review team comprises members from technical leadership and a variety of

occupational positions. No formal data collection is required nor is a database maintained

for trend analysis.

The objectives of a walkthrough are: to find defects, omissions, and contradictions

in the project element; to improve the project element; to consider alternative

implementations; to exchange techniques and style variations; and to educate the

participants. The group size is between two to seven people represented by technical

leadership and a variety of occupational positions. No formal data collection is required nor

is a database maintained for trend analysis.

The objective of a software inspection is to detect and identify project element

defects, with the purpose of: verifying that the project element conforms to specifications

and standards, identifying deviations from specifications and standards; and collecting

software engineering data. Software inspections do not explore alternatives or stylistic

issues. The group is composed of software engineers with the size being from three to six

persons. Data collection is formally required with database entries on items such as defect

counts, error characteristics, and severity, for trend analysis and planning.

One could view the differences between reviews, walkthroughs and inspections

from a presentation perspective. Reviews are in general a corporate presentation of the

product to the key decision makers. Walkthroughs are on a smaller scale and are designed

to examine alternatives and be a forum for learning. Software inspections are designed to

be a small meeting of the minds on the product vice a presentation of the product.

The Department of Defense (DoD) policy on formal reviews is based on DOD-

STD-2167A, which states: "During the software development process, the contractor shall

conduct or support formal reviews and audits as required by the contract" [Ref. 7]. The

DoD technical review process is remarkably similar to the IEEE standard. Specific

guidance on formal reviews by the DoD specifies that they will be done, when they should

occur, and what documents will be reviewed and produced by the contractor. Further

guidance on formal reviews is provided in MIL-STD-1521B [Ref. 8].

C. RESEARCH QUESTIONS

As stated earlier, software testing of NPSNET has been accomplished primarily

utilizing computer-based testing techniques. A designer runs test cases on code that they

have developed and the research group runs the current testing suites on the product with

the new code implemented. Utilizing these techniques alone has significantly reduced

productivity in coding, because errors were not found early enough in the software

development process increasing the amount of rework time to correct problems [Ref. 9].

The use of inspections could improve productivity in coding by detecting errors earlier.

The process of developing an inspection process started with a study of the

development process and product difficulties of NPSNET. These difficulties then become

the framework for development of the inspection process and inspection materials.

How can inspection techniques be adapted to university research efforts? The

process of design and code inspections in their present form requires four to six participants

and takes on the average about four to five hours for each participant. Time and people go

hand in hand, as people have other commitments (i.e., courses, projects, homework,

meetings, etc.) which limits the amount of time for research, let alone inspections. Given

the constraints on time and people (lack of), one needs to tailor inspections to minimize the

amount of time and people used to conduct them.

D. SUMMARY OF CHAPTERS

Chapter II presents the purpose of the checklist, its development and use, followed

by a discussion of the inspection process. Chapter IE discusses the trial inspection from

module selection to analysis of results. Chapter IV summarizes this thesis and its results. It

also explains thesis application and suggestions for future research. The initial and final

NPSNET code inspection checklists are contained in Appendix A and Appendix B

respectively.

II. CODE INSPECTION CHECKLIST

Checklists are a fundamental part of the software inspection process. There are

individual checklists for each type of document reviewed. Checklists are needed for the

inspection process alone, and are normally not used in the initial production of the product.

An analytical tool in the inspection process, checklists need to be available to the inspectors

for individual checking, because this is when they are used the most. Tom Gilb defines the

inspection checklist as: "A specialized set of questions designed to help checkers find more

defects, and in particular, more significant defects. Checklists concentrate on major

defects." [Ref. 1]

A. PURPOSE

The primary goals of the checklist are to instruct, stimulate and increase

performance of the inspection team. Checklists provide guidance to the inspection team on

what is expected. By having a list of questions to refer to, the novice inspector has an idea

of what to look for (i.e., a recipe for finding defects). This allows the novice inspector to be

an effective member of the inspection team with little or no prior training.

Organized properly, checklists can provoke the inspection team to look for more

than they might otherwise. With the checklist covering a variety of areas, it prevents the

inspection team from concentrating on only a couple of areas. It also provides a valuable

memory aid for the experienced inspector, stimulating more questions drawn from past

experiences.

Ultimately, checklists measurably increase the number of defects found by the

inspection team. Because they are based on the most common defects made by developers,

checklists focus the attention of the inspection team on those areas where defects are most

likely to occur. Therefore, they increase the probability of detection by the inspection team.

B. DEVELOPING CHECKLISTS

Checklists should be based on experience developed locally, and should not be

copied from other environments. Experience has shown that copied checklists do not

actually contribute to the identification of major defects. They are often either obvious or

irrelevant, and are usually an attempt to enforce one's own standards. [Ref. 1]

By developing the checklist locally, based on one useful question at a time, the

checklist becomes tailored to one's own needs. The stimulus for this is when it is clear that

a major defect has been identified by an inspector who has asked the question of the

document that others could have asked, but did not. One needs to capture thatinsightfulness

in the form of a checklist question. The inspection leader must be trained to recognize this

situation and to take full advantage of it by asking the inspector to identify the key question

or analytical process used in finding that defect. [Ref. 1]

Checklists should be validated periodically. A simple test to check the validity of

checklist questions is to log the question's identification tag and generate data showing

which checklist questions are resulting in defects detected. If some questions are not

registered over a reasonably long period, then those defects are no longer a common source

for error and those questions should probably be deleted from the checklist. [Ref. 1]

Checklists should be constantly evolving. As producers of the project become

accustom to the checklist, old defects are resolved which give rise to new defects which

will require new checklist questions to detect them. This will become more apparent to the

inspection team over time with use and from results of periodic checklist validations.

Anytime a major defect has been identified by anyone that is not covered in the checklist

is proper cause for inclusion in, and updating of, the checklist. [Ref. 1]

C. NPSNET CODE INSPECTION CHECKLIST

1. Checklist Development

The process of developing the NPSNET code inspection checklist began with the

primary programming language NPSNET is written in, C++. I conducted a search of

existing checklists or documented literature on common sources of programmer errors in

C++. The initial NPSNET checklist is based on the checklist developed by John T.

Baldwin, "An Abbreviated C++ Code Inspection Checklist" [Ref. 10] and the book by

Scott Meyers from his experiences from teaching, "Effective C++" [Ref. 11]. I conducted

an additional search on common sources of errors inherent to programmers, not language

specific. Questions from the checklist by Glenford J. Myers, "The Art of Software Testing"

[Ref. 5], were also incorporated into the NPSNET checklist

To tailor the initial checklist to NPSNET, I conducted interviews with the NPSNET

research group to incorporate questions specifically related to NPSNET difficulties.

Questions that arose from these discussions were language specific pertaining to students'

understanding of C++. The NPSNET research group expressed an interest in addressing

style issues in the checklist A separate section of the checklist incorporates these issues

based on John Falby's document, "Style Guide for Winter AY95" [Ref. 12]. In the

discussions, graphical issues raised were based on performance with the misuse of types in

computations with IRIS Performer. "IRIS Performer is an application development

environment that combines a programming interface for creating visual simulation

applications and a high-performance rendering library in one easy-to-use 3-D software

toolkit. IRIS Performer provides a flexible, intuitive, toolkit-based solution for developers

who want to optimize performance on Silicon Graphics systems" [Ref. 13]. With that

preference in mind, I merged questions into the checklist to address performance

optimization.

2. Initial NPSNET Checklist

The checklist is laid out in terms of category blocks. Within each block there are

category sub-items, and each sub-item represents a checklist question. This organization

allows users to easily locate a set of questions associated with a particular block of code

during the inspection. It also allows one to efficiently maintain the checklist as it undergoes

revisions from the removal and addition of old and new checklist questions. The categories

are chosen based on programming issues, C++ language constructs, and performance

issues with IRIS Performer.

The programming issues addressed in the checklist cover data declarations, data

references, local and global variables, allocating and deallocating data, casting, files,

computations, comparisons, conditionals, control flow and variables, branching, interfaces,

and argument passing. These comprise generic questions about good software engineering

practices, in general, that do not fall into the specific language construct categories (i.e.,

Arrays, Constants, Classes, etc.).

The C++ language constructs presented are arrays, constants, classes, strings,

pointers, assignment operator, and functions. These categories deal with language specific

details and established standards on proper usage to avoid common errors in programming.

Performance issues that are specific to IRIS Performer have been incorporated into

the previous mentioned categories for clarity in usage of the checklist. For example, to take

full advantage of the IRIS Performer math package, one should avoid the use of short

integers and doubles in computations to increase performance. Instead of including a

separate category to handle this, such performance questions were added to the appropriate

variable declaration categories.

Once developed, the initial NPSNET checklist (see Appendix A) was used on actual

NPSNET source code. Based on lessons learned, the checklist has undergone revisions to

its current state (see Appendix B).

3. NPSNET Logging Sheet

Errors found during inspection need to be accurately and efficiently recorded. The

checklist is set up with each checklist question having a unique identification tag made up

of a number representing the category and a alphabetic character associated with each

category question. Example: checklist ID tag = 1A, means category 1 Data Declaration and

the A represents the first question, "Default attributes understood (i.e., no lazy

declarations)?" Using the checklist identification tag simplifies the logging process

considerably, thus allowing more time for inspection and eiror detection. The format for

logging errors on the logging sheet is by source code line number, checklist identification

tag, and explanation of error (optional). If an error is detected that is not addressed as a

checklist question, one signifies it by the symbol"?" in the checklist identification tag field

and annotates the defect in the explanation of error field on the logging sheet.

4. Use of the NPSNET Checklist

a. Producer

The producer of the code to be inspected should develop the code first

without reference to the checklist. The purpose of the checklist is to trigger identification

of issues and is not intended to direct the producer [Ref. 1]. Once the code has been

generated, the producer should ensure that the code is as good as one can make it prior to

the inspection. This means conducting one's own inspection first, ensuring the code meets

the current entry criteria. At a minimum, the code should conform to the standards set forth

in the style guide [Ref. 12]. This involves changing roles: the producer has to step out of

the role of producer and take on the role of the inspector. The producer will conduct at least

two inspections: one prior to, and one during, the inspection process. It is a personal

challenge to the producer to see if they can find additional issues they might have missed

in the pre-inspection.

b. Inspector

In terms of the inspection process, the time spent during individual checking

is one of the most important. One needs to spend enough time to be effective at locating

issues. This entails studying the documents, going over the checklist, and comparing them

against each other. The goal is to find as many issues as possible. The inspector tries to

concentrate on major issues, issues that no one else would find easily, but because of their

expertise and experience, they are found, preventing serious problems later on in

development. To conduct the inspection, the code is examined line by line, with the goal of

fully comprehending what one is reading. After each line or block of code, the checklist is

searched for questions that apply. For each applicable question, the inspector determines

whether the answer is no. A response of "no" to any question is a probable defect and

should be logged. The checklist is not a complete list of what to look for, so the inspector

must be prepared to ask questions and locate issues not addressed by the checklist. One

final note, during the inspection the inspector should look for issues in the supporting

documents and checklist as well, but remember the main emphasis is on the inspection

document.

D. THE INSPECTION PROCESS (TWO PERSON)

1. Preparation

To prepare for the inspection, the producer makes separate hardcopies of the source

code and supporting documents for oneself and the inspection leader. The hardcopy of the

code to be inspected should show the line count. The inspection should be limited to no

more than 250 lines of source code, including comments and excluding whitespace.

[Ref. 10]

2. Inspection Overview

During this meeting, the producer takes about 20 to 40 minutes explaining to the

inspection leader the general design of the code. The goal is to cover the code's main design

features and limit the meeting to as close to 20 minutes as possible without undercutting

the explanations. The inspection leader is not allowed to ask questions because the code is

suppose to answer them. The overview is designed to speed up the process of understanding

in order to allow more time to search for issues. If the inspection leader is already familiar

with the producer's code, the overview is optional and can be omitted by the inspection

leader. [Ref. 10]

10

3. Individual inspection

Each inspector (producer and inspection leader) uses the checklist to accumulate as

many issues as possible, covering between 70 to 120 lines per hour. This has been

determined to be the optimal checking rate for issues found. This should be completed in a

single, uninterrupted, session. [Ref. 10]

4. Logging Meeting

The logging meeting is held for three purposes. The first is to log the issues found

in the individual inspections. Issues are not recorded as defects, for historical purposes,

until the producer has had a chance to evaluate them first. Issues are logged as items

(potential defects or questions of intent to the producer) during this meeting. At this point,

no discussion is allowed. Questions of intent are answered at the conclusion of the meeting.

The second purpose is to identify more issues during the meeting. This is set up by allowing

more time for checking. The third purpose is to identify ways of improving the inspection

process, which includes, but is not limited to, improvement suggestions to procedures, rules

or the checklist. The person who controls the logging meeting is the inspection leader and

the producer logs all items presented. The inspection leader will ensure the producer

receives a copy of the logging sheet for rework and sends a copy to the librarian. [Ref. 1]

5. Follow Up

The inspection leader is responsible for ensuring all items logged have been

reworked satisfactorily. The items classified as defects must be corrected by the producer.

The correctness of the rework will be verified at a short review meeting or another

inspection. [Ref. 10]

6. Record Keeping

Record keeping is essential to the inspection process because it provides invaluable

feedback to all involved. In order to objectively track the success of, and effectively

improve, the inspection process, metrics must be collected. The inspection leader should

11

deliver the logging sheet to the appropriate member of the research group responsible for

managing the records, the librarian. The librarian is responsible for generating all forms,

producing all by-products, and storing information needed for, or resulting from, the

inspection process.

7. Inspection Process Improvement

The librarian is the initiator of inspection process improvement. Based on the

results gathered from each inspection, the librarian proposes changes to the research group

before changes are made. Possible changes to the process are to the checklist and logging

sheet. All suggestion for improvements should be addressed to the librarian.

12

III. TRIAL INSPECTION

The trial inspection is needed to provide feedback on the software inspection

process and to demonstrate the need for that process. The results of the inspection provide

insight to improve the checklist, inspection process, and research on NPSNET. The

inspector for this trial inspection had limited background on the project. This was done to

test the efficiency and effectiveness of the inspection.

A. INSPECTION MODULE SELECTION

To evaluate the inspection process in a structured fashion, careful consideration was

given to the selection of a source document to review. This served two purposes: (1)

provided valuable feedback to the majority of producers for whom the inspection process

was tailored; and (2) establish the time frame to develop code for NPSNET to the amount

of time the majority of producers had to work under.

With these goals in mind, Paul Barham of the NPSNET research group decided that

environ.cc would best be suited for the trial inspection. The determination was based on

the goals stated above, and to minimize the need for a thorough understanding of the

interaction between modules in NPSNET. The latter determination was to allow the

inspector to concentrate on the module being inspected during the inspection.

B. PREPARATION

With the module for inspection chosen, supporting files required in order to conduct

a thorough inspection were obtained from the NPSNET research group. Before beginning

the inspection, the inspector familiarized oneself with the supporting documents to acquire

an understanding of the constants, definitions, global variables, and constructs used in

NPSNET. Once the overview of the supporting documents was complete, a detailed

understanding of the functionality of the module to be inspected was required. This process

was begun by reading the document environ.cc for the sole purpose of understanding what

supporting documents would be needed for the inspection. In retrospect, this should have

13

been done first as it would have saved on time and effort spent studying files unrelated to

environ.cc. This was determined by inspection of all names against their definitions, which

resulted in only one name untraced, NUMNODES. With NUMNODES being a global

constant to NPSNET, the cost of finding its definition outweighed the gain. Based on the

use of NUMNODES, it posed no serious threat to the operability of the code as long as

NUMNODES was initialized to a value greater than zero. The file that contained

NUMNODES was not apparent from a preliminary search. For that reason, no additional

supporting code documents were required for the inspection.

A second pass through the environ.cc document was conducted to gain a thorough

understanding of how the module functioned. Areas of concentration were user-defined

definitions, data structures, and function used in the environ.cc file. To enhance

understanding of the data structures used, pictures were utilized to visualize the concepts.

By tracing through examples, a detailed knowledge of the operation of the functions in the

module to be inspected was obtained.

C. INSPECTION

The inspection process identified three items: (1) errors in the module environ.cc;

(2) questions that arise from discrepancies in the checklist; and (3) questions that arise

about NPSNET in general. These three items are geared to improve the code generated by

the NPSNET research group, improve the checklist, tailor the checklist to NPSNET, and

improve the inspection process, as a whole.

The inspection was conducted by examining each line of code against the checklist,

logging code defects on the logging sheet and annotating any questions that arose during

the inspection process on the appropriate sheets labeled "Checklist Questions" and

"NPSNET Questions". With the length of the module containing over 400 lines of non-

commented source code, the inspection was broken up into several two hours sessions to

prevent diminished performance [Ref. 1]. The minimum break time between sessions was

one hour, to allow for recuperation. During the inspection process, defects were identified

14

and marked as such based on usage being unclear or wrong, according to the inspector's

interpretation of the code and issues raised from the checklist.

D. ANALYSIS

1. Time

The total time to conduct the inspection from familiarization with supporting

documents to the actual document inspected was 23.5 hours. This does not include the time

for gathering or developing inspection materials for the inspection.

Time spent in familiarization with supporting documents was 3 hours. A lot of this

effort could have been prevented in a normal inspection, because the participants would

have been members of the research group and would have already been familiar with most

of the supporting documents reviewed. An additional 3 hours was spent finding out what

supporting documents were actually needed for the inspection by looking over the

inspection document. As a result of not being the producer of the inspection document,

unnecessary documents were reviewed for the inspection increasing time and effort spent,

as mentioned earlier (section B. Preparation). By having the actual producer of the

inspection document gather the necessary supporting documents, this effort would have

been streamlined.

Before the inspection, 5 hours was required to understand how environ.cc

functioned, in order to increase the effectiveness of the inspection. Time spent in this phase

was inflated for two reasons: (1) no overview by producer; and (2) inspector was not a

member of the research team. With a good overview by the producer of the inspection

document, less effort is consumed in understanding the data structures, and the intent or

logic of the producer, allowing the inspectors more time to concentrate on finding errors.

By not being a member of the research group, the inspector did not have a complete

understanding of how this module interrelated with other modules without obtaining

further knowledge about NPSNET (big picture issues). The time spent in that effort would

15

have been part of the producer's overview or covered in the research group discussions

prior to the inspection taking place.

The inspection itself took 12.5 hours to complete, covering about 34 lines per hour

of non-commented source code. The standard for the inspection is to cover about 120 lines

per hour [Ref. 1]. I attribute the excessively slow line rate to the amount of errors detected

during the inspection. There were 160 errors found in 450 lines of non-commented source

code, for an error rate of 35%, twice as high as the industry standard [Ref. 1]. A majority

of the errors detected could have been eliminated by the producer, if the checklist was

available at the time of production to ensure appropriate entry criteria were met, prior to

conducting the inspection. By ensuring the inspection document conforms to style and

format issues prior to the inspection taking place, one can concentrate on finding more

meaningful defects, instead of consuming valuable time logging defects the producer

should have addressed.

In summary, the majority of the time (over 60%) was in understanding NPSNET

with no prior training. By having the producer and research group members participate in

the inspection process, the time spent on the process is minimized, because the

understanding and knowledge of the product is already present. With appropriate

comments added to the source code files, one's understanding of those files would improve

immensely. Prior to conducting an inspection, the producer should ensure the inspection

module meets certain minimum entry criteria to improve the effectiveness and efficiency

of the inspection.

2. Defects Detected

As stated earlier, 450 lines of non-commented source code were inspected

producing 160 errors detected, resulting in an error rate of 35%. A distribution of the errors

16

detected is listed in Table 1. The errors are laid out by the checklist identification tag, type

ID Tag Type Error Instances % of Errors

2A magic # 42 26

4A integer
declaration

33 21

1A lazy
declaration

22 14

New magic # 18 11

New format # 13 8

New commented
out code

10 6

3B constant
declaration

10 6

26B magic # 6 4

New vague ID 3 2

ID conflicting
variables

1 1

4B character
declaration

1 1

New improper
design

1 1

Table 1: Distribution of errors detected

of error, number of occurrences, and percentage of errors detected. Issues that were raised

that do not have a checklist identification tag are represented with a brief explanation of the

defect. The majority of errors detected resulted from the use of hard-coded constants, over

40%. The excessive use of these "magic numbers" in the code hindered comprehension of

code functionality and contributed greatly to loss of clarity. The second greatest source of

errors detected was declaring variables to be signed when they only take on positive values.

17

There is no reason to allow illegal values to be stored in one's variable legally (strong type

checking). The third common source of errors detected was lazy declarations. This could

hinder performance with IRIS Performer. By not declaring the precision of floating point

numbers, IRIS Performer promotes all undeclared floating point numbers to double

precision, instead of single precision, slowing down performance. Once the producers

become familiar with the checklist, the over-abundance of the three previous error types

should diminish.

The distribution of the defect density is shown in Table 2, with an average defect

density of 10 defects per page and a 7.08 standard deviation. As one reviews Table 2, there

is no apparent pattern associated with the defect density, except uniformity over the

document reviewed. In comparing the errors made in the first eight pages (84) to the last

eight pages (76), they were relatively the same. I conclude that the average defect density

is an initial benchmark of the amount of errors one can expect to find on any page generated

by this producer prior to conducting an inspection.

Also included in Table 2 are categories for non-commented source code lines per

page and page content. Page content has six classifications (comments, declarations,

controls, conditionals, calculations and data usage), determined by the dominant

classification on the page. A classification of comments was given to pages with less than

10 lines of non-commented source code and those pages were excluded in the analysis of

page content. A one-way analysis of variance using t-tests on the data presented in Table

2 was conducted. The results of three tests from the series are presented in Table 3. First,

the defects were studied against the code lines per page, running tests based on a variety of

code line groupings. The results in Table 3 show a weakly significant association, with the

majority of the defects occurring between 20 to 29 code lines per page. Next, the defects

were analyzed against the page content, resulting in no significant association. After

grouping the classifications into two groups, data and control, a strongly significant

association was formed (see Table 3). The data group contained declarations, data usage

and calculations, while the control group contained conditionals and controls. The results

18

demonstrate that the majority of the defects found were in data manipulation vice program

control. For completeness, the defects content was studied. This is determined by the

dominant classification of defects occurring on a page, using the same rules to classify page

content. The analysis of defects against defects content resulted in no significant

association (see Table 3).

Page Defects Code Lines Page Content

1 0 1 declarations

2 20 35 declarations

3 11 24 declarations

4 11 27 controls

5 13 29 data usage

6 9 29 conditionals

7 16 37 data usage

8 4 37 conditionals

9 4 30 controls

10 17 29 data usage

11 17 36 data usage

12 9 25 data usage

13 22 26 calculations

14 0 34 conditionals

15 5 38 calculations

16
2 13 data usage

Table 2: Defect density

In summary, the majority of the errors (over 40%) were due to the use of "magic

numbers." The average defect density was 10 and can be used as an initial benchmark for

the amount of errors on any given page prior to conducting the inspection. Further analysis

19

of the defects metrics produced a strongly significant association between data

manipulation and program control, with the majority of defects discovered in the former.

The information obtained from this analysis can be utilized in future inspections to guide

inspectors on areas of concentration, making changes to the checklist, improving the

inspection process, and improving the software development process of NPSNET. The

metrics collected as a result of this inspection are only a fraction of the NPSNET code. The

findings tend to support the utility of code inspections in the validation of virtual reality

systems.

Test Group Instances Mean Standard
Deviation

Code Lines 1-19 2 1.0 1.41
a 20-29 7 13.1 4.78
a 30+ 7 9.4 8.00
tt Total 16 10.0 7.08

Defects
Content

Declaration 7 10.4 6.05

« Data Usage 6 13.8 6.11
ii

Conditional 1 9.0 0.00
U Total 14 11.8 5.90

Page
Content

Data 10 13.2 6.46

a Control 5 5.6 4.39
u Total 15 10.7 6.79

Table 3: Statistical Analysis

3. Observations

After conducting the trial inspection, the inspection process and checklist were

evaluated with two members of the NPSNET research group. First, each member was

20

presented with a copy of the results of the inspection and were asked to look over the items

in the checklist that did not result in a defect being detected. As a result of the discussion,

categories 9,16,27,28 and 29 were removed from the checklist, due to limited use or non-

use. New checklist items were added based on the findings in the inspection of issues raised

which did not result from the inspection checklist. For example, a non-checklist issue raised

was that obsolete code was left in files to document how things were done previously or as

a design decision on what variables could be added to the functionality of the module. It

was decided it should have been properly documented in the code and this issue was added

to the checklist.

Lastly, we discussed NPSNET in general, beginning with the limited use of

comments. It was brought to my attention that in the past operability was primary and

understanding was secondary in code generation. As NPSNET expanded, this approach has

been counterproductive in the area of expansion and maintainability of the code. However,

with the new style guide addressing the issue of comments in the code, the members are

confident that the overall expansion and maintainability of the code will improve. The use

of inconsistent style in representing floating point numbers is a result of no standards being

set at time of code generation. These issues should be resolved with the use of the checklist.

The final question discussed with the members had to do with the primary language

used, C or C++. In the code reviewed, the majority of the code resembled ANSI C with C++

used intermittently. The predominant language to date is C++, but NPSNET was originally

written in C and over time C++ became the language of choice. Older modules have not

undergone a complete revision to the C++ language constructs.

21

22

IV. SUMMARY AND CONCLUSIONS

The use of software inspections has seen enormous growth during the last decade

as more studies reveal the benefits in verification and validation of software from their use

[Ref. 14]. As the need and use of virtual reality systems increase, so does the need for

reliable results from such systems. This thesis demonstrates how an inspection process can

be defined for a virtual reality system to help satisfy the need for reliable results.

A. RESEARCH SUMMARY

This thesis presents research that developed a two-person code inspection for

NPSNET. The purpose was two-fold: to improve the validation process and to increase

productivity in coding. The approach chosen was based on the inspection method presented

by Michael E. Fagan, developed for IBM and published in 1974 [Ref. 15]. The

development of the inspection process began with the development of the checklist. The

checklist was based on previous research and results from this thesis. The design of the

inspection process focused on reducing the preparation time and the number of participants

to conduct an inspection by having only two knowledgable members participate in the

inspection. This thesis demonstrates that it is possible to develop an inspection process that

minimizes the amount of time and people used to conduct inspections, and still have the

inspection sensitive enough to locate coding problems.

The research group as a whole welcomed the results of the trial inspection and use

of the checklist in general. They were confident from the results of the trial inspection that

code examined from its use would improve the performance, operability, maintainability,

and expansion of NPSNET.

B. APPLICATION

Although the code inspection was developed for two participants, its application is

easily extendable to allow more participants. The flexibility is provided by the individual

inspection portion of the inspection process. This affords the luxury of adding additional

23

inspectors without major modification to the inspection process. The individual inspection

portion also allows the inspection leader to assign inspectors different sections of the code

to inspect, increasing the code coverage.

Other NPS research groups and research groups in general may find the NPSNET

code inspection useful as it is effectively a case study of how to implement software

inspections. The main difference between the NPSNET inspection process and the others

would be the inspection materials utilized by the various research groups as these are

tailored to the specific projects.

The NPSNET code inspection process might also be of interest to software

developers interested in instituting software inspections at their facility. By utilizing the

two-person inspection process initially, one can implement the inspection process on an

experimental basis. After establishing a history of its benefit, based on local experience,

one can present the results to management for establishment of policy.

C. FUTURE RESEARCH

The NPSNET research group is currently in the process of re-designing their

software development process. This thesis dealt with the coding phase of the software

development process. As a result, the need for development of inspection materials dealing

with the design phase was demonstrated. With the majority of NPSNET code uninspected

by a formal inspection process, further inspections need to be conducted to aid in the

validation of the system. This entails the collection of additional metrics and further

statistical analysis to improve the inspection process in the future.

With the recent introduction of configuration management to the NPSNET system,

the research group should support error collection. The evaluation of errors detected by

other means, after the software inspection has been conducted, needs to be incorporated

into the inspection checklist to aid in early detection and provide some overlap between the

differing methods of testing.

24

In addition, an automated tool to assist program developers in ensuring compliance

of their code to the rules of the style guide needs to be developed. Such a tool will decrease

errors and provide inspectors more time to search for major defects during the inspection.

Other automated tools to examine parser-determinable inspection questions (for example,

1A, 2A and 6A) need to be developed to assist the software development process and

reduce the amount of time addressing these issues.

25

26

APPENDIX A. INITIAL NPSNET CODE INSPECTION CHECKLIST

1. Data Declaration
A. Default attributes understood (i.e., no lazy declarations)?

B. Correct lengths, types, and storage classes assigned?

C. Initialization consistent with storage class?

D. Any variables with similar names and dissimilar purpose?

2. Arrays
A. Is the array not dimensioned to a hard-coded constant (magic number)?

B. Is the array initialized and consistent with use?

3. Constants
A. Does the value of the variable change?

B. Are constants not declared with the preprocessor #define mechanism?

4. Scalar Variables
A. Does a negative value of the variable make sense? If not, is the variable unsigned!

B. Does the code explicitly declare char as either signed or unsigned!

C. Does the program use int or float to enhance running time (IRIS Performer)?

5. Classes
A. Does the class have any virtual functions? If so, is the destructor virtual?

B. Does the class have all of the following: Copy-constructor, Assignment operator or
Destructor?

27

6. Data Reference
A. No unset variables used?

B. Subscripts within bounds?

C. Subscripts have integer values?

D. No dangling references? ***** Moved to RETURN VALUES *****

7. Strings
A. Is the string initialized properly?

B. Space declared for null-termination?

C. Is the string null-terminated?

D. String limits not exceeded?

8. Buffers
A. Are there always size checks when copying into the buffer?

B. Is the buffer large enough to hold its contents?

9. Bitfields ***** Removed *****
A. Is a bitfield really required for this application?

B. Are there possible ordering problems (portability)?

10. Local Variables
A. Are local variables initialized before being used?

B. Are C++ locals created and then initialized when needed?

28

11. Macros (inline functions)
A. Are macros not declared with the preprocessor #define mechanism?

12. Allocating Data
A. Is enough space being allocated?

B. Is new used in lieu of mallocQ, cal!oc(), or reallocQ?

13. Deallocating Data
A. No arrays are deleted as if they were scalars?

B. Is delete used in lieu of free?

14. Pointers
A. When dereferenced, can the pointer ever be NULL?

B. When copying dynamic memory, one copies the complete structure and not just
allocate a copy of what the first pointer points to?

15. Casting
A. The code does not rely on implicit type conversion? ***** Modified *****

16. Files ***** Removed *****
A. Files opened before use?

B. End-of-file conditions handled?

C. File attributes correct?

D. Is the FILE argument of fprintf included?

E. Is a temporary file name unique?

F. Is a file pointer reused after closing the previous file?

G. Is a file closed in case of an error return?

29

17. Computation
A. No mixed-mode computations?

B. No division by zero?

C. Operator precedence understood? ***** Modified *****

18. Comparison
A. Comparison relationships correct (e.g., <, >, =, !=, etc.)?

B. Boolean expressions correct (e.g., &&, II, etc.)?

C. Comparison and boolean expressions mixed correctly?

D. Operator precedence understood (parenthesized)?

E. Compiler evaluation of boolean expressions understood (short circuit)?

19. Conditionals
A. Are exact equality tests not used on floating point numbers?

B. Are signed variables not tested for equality to zero or another constant?

C. If the test is an error check, is the "error condition" not legitimate in other cases?

20. Control Flow
A. Will loop terminate?

B. Any loop bypasses because of entry conditions not set?

C. No off-by-one iteration errors?

21. Control Variables
A. Is the lower limit an inclusive limit?

B. Is the upper limit an exclusive limit?

30

22. Branching
A. In a switch statement, is every case terminated with a break statement?

B. Does the switch statement have a default branch?

23. Interfaces
A. All references to parameters associated with current point of entry?

B. Global variable definition consistent across modules?

24. Assignment Operator
A. Does "a += b" have the same meaning as "a = a + b"? ***** Modified *****

B. Is the argument for a copy constructor or assignment operator const?

C. Does the assignment operator test for self-assignment?

D. Does the assignment operator return a const reference to this?

25. Argument Passing
A. Are non-intrinsic type arguments passed by reference?

B. No hard-coded constants passed as arguments (magic numbers)?

C. All input-only arguments declared const?

26. Return Values
A. Is the return value of a function call being stored in a type that maintains precision?

B. Does a public member function return a const reference or pointer to member data?

C. Does a public member function return a const reference or pointer to data outside the
object?

D. Does an operator return an object when it should, instead of a reference?

E. Are objects returned by const references?

31

27. Input/Output ***** Removed *****
A. OPEN statements correct?

B. Format specification matches I/O statement?

C. Buffer size matches record size?

D. I/O errors handled?

E. No textual errors in output information?

28. General Functions ***** Removed *****
A. Is this the correct standard function call (i.e., strchr instead of strrchr)?

B. Can this function not violate the preconditions of a called function?

29. Varargs Functions ***** Removed *****
A. Are there no extra arguments?

B. Do the argument types explicitly match the conversion specifications in the format
string?

32

APPENDIX B. NPSNET CODE INSPECTION CHECKLIST

1. Data Declaration

A. Default attributes understood (i.e., no lazy declarations)?

const float AspectRatio = 1.653; // Default of literal promotes to double,
should be:

const float AspectRatio = 1.653f; // Enhances performance of IRIS Performer.

B. Correct lengths, types, and storage classes (e.g., const, static, virtual, etc.) assigned?

C. Any variables with similar names and dissimilar purpose?

2. Arrays

A. Is the array not dimensioned to a hard-coded constant (magic number)?

intDaysInMonth[12];
should be:

int DaysInMonthfMonthsInYear];

B. Is the array initialized and consistent with use?

C. No off-by-one iteration errors in indexing?

D. Is the array dimensioned properly?

const unsigned int MaxColors = 32;
const unsigned int MaxFlamePlumes = 5;
unsigned int FlamePlumes[MaxColors];

should be:
unsigned int FlamePlumes[MaxFlamePIumes];

33

3. Constants

A. Does the value of the variable change?

int MonthsInYear =12;
should be:

const unsigned int MonthsInYear =12;

B. Are constants not declared with the preprocessor #define mechanism?

#define MaxFlamePlumes 5
should be:

const unsigned int MaxFlamePlumes = 5;

C. Do all constant literals explicitly declare their type suffix (e.g., 1.525F,40000L, etc.)?

4. Scalar Variables

A. Does a negative value of the variable make sense? If not, is the variable unsigned!

int age;
should be:

unsigned int age;

B. Does the code explicitly declare char as either signed or unsigned?

typedef char Smalllnt;
Smalllnt Temp = 280; // WRONG on Borland C++ 3.1

//orMSC/C++7.0!
should be:

typedef unsigned char uSmalllnt;
typedef signed char Smalllnt;

C. Does the program use int or float, when necessary, to enhance running time (IRIS
Performer)?

To take advantage of IRIS Performer's math package avoid the use of short ints and
prefer single precision to double precision in all calculations.

34

5. Classes

A. Does the class have any virtual functions? If so, is the destructor virtual?

Classes having virtual functions should always have a virtual destructor. This is
necessary since it is likely that one will hold an object of a class with a pointer of a
lesser derived type. Making the destructor virtual ensures that the right code will be
executed if the object is deleted via the pointer.

B. Does the class have all of the following: Copy-constructor, Assignment operator or
Destructor?

If not, in general, one will need all three. The exception may be found for classes
having only a destructor without the other two.

6. Data Reference

A. No unset variables used?

B. Subscripts within bounds?

C. Subscripts have integer values?

7. Strings

A. Is the string initialized properly?

B. Space declared for null-termination?

C. Is the string null-terminated?

D. String limits not exceeded?

8. Buffers

A. Are there always size checks when copying into the buffer?

B. Is the buffer large enough to hold its contents?

35

9. Local Variables

A. Are local variables initialized before being used?

10. Macros (inline functions)

A. Are macros not declared with the preprocessor #define mechanism?

#define Max(A,B) ((A) > (B) ? (A): (B))
should be:

inline int Max(int A, int B) { return A>B ? A : B;}
not quite the same as the macro above, because this version can only be called with
ints, however, templates solve that detail:

template<class T>
inline T& Max(T& A, T& B) { return A>B ? A : B; }

if templates not supported then
#define GenerateMax(T) inline T& Max(T& A, T& B) { return A>B ? A : B; }

11. Allocating Data

A. Is enough space being allocated?

B. Is new used in lieu of malIoc(), calIoc(), or reallocO?

The problem with malIoc(), calloc(), or realloc() is that they know nothing about
constructors or destructors and use with objects that have constructors results in
unexpected program behavior.

12. Deallocating Data

A. No arrays are deleted as if they were scalars?

delete MyCharArray;
should be:

delete [] MyCharArray;

B. Is delete used in lieu of free?

The problem with free is that it knows nothing about constructors or destructors and
use with objects that have destructors results in unexpected program behavior.

36

13. Pointers

A. When dereferenced, can the pointer ever be NULL?

B. When copying dynamic memory, one copies the complete structure and not just
allocate a copy of what the first pointer points to?

14. Casting

A. The code does not rely on an implicit type conversion (where inappropriate)?

15. Computation

A. No mixed-mode computations?

B. No division by zero?

C. Is operator precedence explicit (parenthesized)?

Temp = 9-5+3 // What value of Temp (7 or 1)?
should be:

Temp = (9-5)+3; //Tempis7.
Temp = 9-(5+3); // Temp is 1.

16. Comparison

A. Comparison relationships correct (e.g., <, >, =, !=, etc.)?

B. Boolean expressions correct (e.g., &&, II, etc.)?

C. Comparison and boolean expressions mixed correctly?

D. Operator precedence understood (parenthesized)?

E. Compiler evaluation of boolean expressions understood (short circuit)?

37

17. Conditionals

A. Are exact equality tests not used on floating point numbers?

B. Are signed variables not tested for equality to zero or another constant?

C. If the test is an error check, is the "error condition" not legitimate in other cases?

18. Control Flow

A. Will loop terminate?

B. Any loop bypasses because of entry conditions not set?

C. No off-by-one iteration errors?

19. Control Variables

A. Is the lower limit an inclusive limit?

B. Is the upper limit an exclusive limit?

A whole class of off-by-one errors are eliminated by using inclusive lower limits and
exclusive upper limits.

20. Branching

A. In a switch statement, is every case terminated with a break statement?

B. Does the switch statement have a default branch?

21. Interfaces

A. All references to parameters associated with current point of entry?

B. Global variable definition consistent across modules?

38

22. Assignment Operator

A. Are user-defined operator overloading consistent with C++ built-in operators?

In other words, does "a += b" have the same meaning as "a = a + b"?
Programmers should never change the semantics of relationships between intrinsic
operators.

B. Is the argument for a copy constructor or assignment operator const?

C. Does the assignment operator test for self-assignment?

operator=() should always start out with: if (this == &RightHandSide) return *this;

D. Does the assignment operator return a const reference to this?

This convention allows the user to write legal C++.

23. Argument Passing

A. Are non-intrinsic type arguments passed by reference?

MyType& MyFunction(MyType MyParameter);
should be:

MyType& MyFunction(const MyType& MyParameter);

B. No hard-coded constants passed as arguments (magic numbers)?

C. All input-only arguments declared const?

39

24. Return Values

A. Is the return value of a function call being stored in a type that maintains precision?

float& AreaOfCircle(const double& Radius);
should be:

double& AreaOfCircle(const double& Radius);

B. Does a public member function return a const reference or pointer to member data?

C. Does a public member function return a const reference or pointer to data outside the
object?

D. Does an operator return an object when it should, instead of a reference?

E. Are objects returned by const references?

F. No functions return a reference to a local variable (dangling reference)?

25. Miscellaneous Code

A. No hard-coded constants (magic numbers) in code?

B. No commented out code in the module?

C. Do all floating point constants have at least one digit before and after the decimal point
(e.g., 1.0F)?

40

Style Guide Section

26. Naming

A. Do all variables have meaningful names?

B. Are all identifier names in lower or mixed case (e.g., function, typedef, variable names,
class, struct, union, and enum tag names)?

C. Are enum elements all in CAPS, but instantiations can be lowercase?

D. Do all names for a class end in "Class", typedef in "Type", and enum in "Enum"?

class car {...
};

typedef car auto;
enum autoMake {TOYOTA, HONDA, FORD, CHEVY};

should be:
class carClass {...
};

typedef carClass autoType;
enum autoMakeEnum {TOYOTA, HONDA, FORD, CHEVY};

E. Are names with a leading or trailing underscore used only on preprocessor #defines?

F. Are #define and const names all in CAPS?

G. Do all global variable names start with "G_"?

H. Do all global variable names, used in a single file, start with "L_"?

Remember: #define and const names are not global variables.

27. Indentation

A. Is all code indentation based on three spaces vice tabs?

41

B. Does indentation conform to "Style Guide"?

//This function is an example of the indentation requirements.
void func(type argument)
{

//body of function
if (expression) { / /The use of braces is required for all control structures.

//Do something.
statement(s);

}
else if { / /Clause not required.

statement(s);
}
else{ / /Clause not required.

statement(s);
}//endif

for (expression; expression; expression)!
statement(s);

}

do{
statement(s);

} while (expression);

while (expression) {
statement(s);

}

switch(expression) {
case constant: //The first case

//Do something.
statement(s);
break; / /Always have a break statement after each case,

default: / /Always have a default case.
statement(s);
break;

} //end switch
} //endfunc

C. Do all preprocessor commands (#xxxxx) start in the first column?

D. Are all functions separated from other text/code by at least two blank lines?

42

28. Classes

A. Are class functions and member data declared in the proper order?

//This class is an example of the proper order,
class nameClass {

//Friends.
friend class friendClass;
friend int functName(int);

public:
nameClassO; //Constructor.
~nameClass(); //Destructor,
void publicFunctO;
int publicData;

protected:
void protectedFunct();
int protectedData;

private:
void privateFunctO;
int privateData;

} //end nameClass.
Friend functions and classes should be used sparingly and only under very rare cases.

29. Functions

A. Does every function have a prototype?

B. Does the function have one return statement?

C. Does the main() function return an int and has a valid return statement included?

D. Is the return value of a function tested?

43

30. Globais

A. Is a shared variable between multiple files conform to the "Style Guide"?

The main source file has this construct:
#define .COMMON,

and the global shared header file has:
#ifndef_COMMON_
#define _COMMON_ extern
#endif

B. Are globals variables only declared in the global header file?

should be:
COMMON
int G_addCounter; / /A counter used to keep track of the number of additions.

31. Files

A. Do all source files have the proper extensions, C++ is ".cc", C is ".c", and all headers
are ".h"?

B. Do all source files have an associated header file, except the source file that has the
main function included?

C. Does the source file include only the necessary header files (no extras)?

32. Code Files

A. Does a file that contains class member functions only contain class member functions?

B. Does the source code file contain the proper elements?

//This is an example of the source file format.
- File comment (see item 34B).
- All defines used to block out sections of code.
- Header (#include) files, standard library headers then user headers.
- Local Globals.
- Functions (Code),
//end of file source file.cc

44

33. Header Files

A. Is there only one independent base class declared in the header file?

B. No variables are declared in the header file, except globals?

C. Does the header file contain the proper elements?

//This is an example of the header file format.
#ifndef _HEADER_FILE_H / /Always included with the name of the header file
#define _HEADER_FILE_H
- File comment (see item 34B).
- Header (include) files, standard library headers then user headers.
- #defines, enumerations or constants.
- User defined data types (typedefs).
- Globals.
- Function prototypes.
#endif
//end of file header_file.h

34. Comments

A. Are C++ "//" constructs used for all comments?

B. Do source and header files have a descriptive comment at the top?

//Name:
//Project:
// Operating Environment:
/ / Compiler:
//Description:

C. Does the function have a comment description?
//Function:
//Return Type: void
/ / Parameter: int count - the current program count value
/ / float *value - the returned value of the static counter
//Purpose: This function takes a counter and converts it to the lapsed time

void myFunc(int count, float *value)
{

*value = count / TIMER;
}

45

46

1.

LIST OF REFERENCES

Gilb, Tom, Graham, Dorothy, "Software Inspection", Addison-Wesley, 1993.

2. Zyda, Michael J., Pratt, David R., Falby, John S., Barham, Paul T. and Kelleher,
Kristen M., "NPSNET and the Naval Postgraduate School Graphics and Video
Laboratory", Presence, Volume 2, No. 3, March 1994, pp. 244-258.

3. Torsiello, Kevin A., "Acoustic positioning of the NPS Autonomous Underwater
Vehicle (AUV H) during hover conditions.", Master's Thesis, Naval Postgraduate
School, Monterey, California, March 1994.

4. Book, S., "Improving Software Characteristics of a Real-time System Using
Reengineering Techniques.", Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1994.

5. Myers, Glenford J., "The Art of Software Testing", John Wiley & Sons, Inc., 1979.

6. "IEEE Standard for Software Reviews and Audits", IEEE Software Engineering
Standards Collection, Spring 1991, Std 1028-1999.

7. "Defense System Software Development", Department of Defense, 29 February
1988, DOD-STD-2167A.

8. "Technical Reviews and Audits for Systems, Equipments, and Computer Software",
Department of Defense, 4 June 1985, MIL-STD-1521B.

9. Weiler, Edward E, "Lessons from Three Years of Inspection Data", IEEE Software
September 1993.

10. Baldwin, John T, "An Abbreviated C++ Code Inspection Checklist", 27 October
1992.

11. Meyers, Scott, "Effective C++", Addison-Wesley, 1992.

12. Falby, John, "Style Guide for Winter AY95", Lecture Notes, Department of
Computer Science, Naval Postgraduate School, 3 January 1995.

13. "IRIS Performer Programming Guide", Silicon Graphics, Inc., 1992.

14. Ackerman, A. Frank, Buchwald, Lynne S. and Lewski, Frank H., "Software
Inspections: An Effective Verification Process", IEEE Software, May 1989.

15. Fagan, M. E., "Design and code inspections to reduce errors in program
development", IBM Systems Journal, Volume 15, No. 3,1976, pp. 182-211.

47

48

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS j
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Professor Timothy J. Shimeall, Code CS/Sm 4
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Instructor John S. Falby, Code CS/Fa
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor Michael J. Zyda, Code CS/Zk
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor David R. Pratt, Code CS/Pr
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

8. Paul T. Barham
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

9. LT Charles E.Adams..
324 English Avenue
Monterey, CA 93940

49

